

MAHA BARATHI ENGINEERING COLLEGE
NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM TK, KALLAKURICHI DT – 606 201.

Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
2(f) & 12(B) status of UGC, New Delhi,

www.mbec.ac.in 04151-256333, 257333 mbec123@gmail.com

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS3361 – DATA SCIENCE LAB MANUAL

II Year/III Semester B.E CSE

 Regulation 2021
(As Per Anna University, Chennai syllabus)

 Prepared By, Verified By,

 P.AKILA N.KHADIRKUMAR

 (AP/CSE) (HOD/CSE)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

 CS3361 DATA SCIENCE LABORATORY L T P C

 0 0 4 2

OBJECTIVES:
 To understand the python libraries for data science

 To understand the basic Statistical and Probability measures for data science.

 To learn descriptive analytics on the benchmark data sets.

 To apply correlation and regression analytics on standard data sets.

 To present and interpret data using visualization packages in Python .

LIST OF EXPERIMENTS:

1. Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas

packages.

2. Working with Numpy arrays

3. Working with Pandas data frames

4. Reading data from text files, Excel and the web and exploring various commands for doing descriptive

analytics on the Iris data set.

5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:

a. Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and

Kurtosis.

b. Bivariate analysis: Linear and logistic regression modeling

c. Multiple Regression analysis

d. Also compare the results of the above analysis for the two data sets.

6. Apply and explore various plotting functions on UCI data sets.

a. Normal curves

b. Density and contour plots

c. Correlation and scatter plots

d. Histograms

e. Three dimensional plotting

7. Visualizing Geographic Data with Basemap

TOTAL : 60 PERIODS
OUTCOMES:

On completion of this course, the students will be able to:

 CO1: Make use of the python libraries for data science

 CO2: Make use of the basic Statistical and Probability measures for data science.

 CO3: Perform descriptive analytics on the benchmark data sets.

 CO4: Perform correlation and regression analytics on standard data sets

 CO5: Present and interpret data using visualization packages in Python.

INSTALLING ANACONDA ON WINDOWS

Anaconda distribution of Python is the best option for problem solvers who want to use Python. Anaconda

is free (although the download is large which can take time) and can be installed. Anaconda comes bundled

with about 600 packages pre-installed including NumPy, Matplotlib and SymPy. These three packages

are very useful for problem solvers and will be discussed in subsequent chapters.

Follow the steps below to install the Anaconda distribution of Python on Windows.

Steps:

1. Visit Anaconda.com/downloads

2. Select Windows

3. Download the .exe installer

4. Open and run the .exe installer

5. Open the Anaconda Prompt and run some Python code

1. Visit the Anaconda downloads page

Go to the following link: Anaconda.com/downloads

The Anaconda Downloads Page will look something like this:

2. Select Windows

Select Windows where the three operating systems are listed.

https://www.anaconda.com/download/
https://www.anaconda.com/download/

 3.Download

Download the most recent Python 3 release. At the time of writing, the most recent release was the Python

Version. Python 2.7 is legacy Python. For problem solvers, select the Python 3.6 version.

If you are unsure if your computer is running a 64-bit or 32-bit version of Windows, select

64-bit as 64-bit Windows is most common.

Begin with the installation process:

Getting Started:

 Getting through the License Agreement:

 Select Installation Type: Select Just Me if you want the software to be used by a single User

Choose Installation Location:

 Advanced Installation Option:

 Getting through the Installation Process:

 Recommendation to Install Pycharm:

 Finishing up the Installation:

Working with Anaconda:

Once the installation process is done, Anaconda can be used to perform multiple operations. To begin

using Anaconda, search for Anaconda Navigator from the Start Menu in Windows

Exploring NumPy Packages:

NumPy is a Python package used for numerical computation. NumPy is one of the foundational packages

for scientific computing with Python. NumPy's core data type is the array and NumPy functions operate

on arrays.

Installing NumPy

Before NumPy's functions and methods can be used, NumPy must be installed. Depending on which

distribution of Python you use, the installation method is slightly different.

Install NumPy on Anaconda

If you installed the Anaconda distribution of Python, NumPy comes pre-installed and no further

installation steps are necessary.

If you use a version of Python from python.org or a version of Python that came with your operating

system, the Anaconda Prompt and conda or pip can be used to install NumPy.

Install NumPy with the Anaconda Prompt

To install NumPy, open the Anaconda Prompt and type:

> conda install numpy

Type y for yes when prompted.

 Verify NumPy installation

 To verify NumPy is installed, invoke NumPy's version using the Python REPL. Import NumPy and call

the . version attribute common to most Python packages.

In [1]:

import numpy as np

np.version

Out[1]:'1.16.4'

A version number like '1.16.4' indicates a successful NumPy installation.

Exploring SciPy Packages:

Installing With Pip

You can install SciPy from PyPI with pip:

python -m pip install scipy

Installing Via Conda

You can install SciPy from the defaults or conda-forge channels with conda:

conda install scipy

Exploring Juypter Packages:

Installing Juypter

The simplest way to install Jupyter notebooks is to download and install the Anaconda distribution of

Python. The Anaconda distribution of Python comes with Jupyter notebook included and no further

installation steps are necessary.

Installing Jupyter on Windows using the Anaconda Prompt

To install Jupyter on Windows, open the Anaconda Prompt and type:

> conda install jupyter

Type y for yes when prompted. Once Jupyter is installed, type the command below into the Anaconda

Prompt to open the Jupyter notebook file browser and start using Jupyter notebooks.

> jupyter notebook

Exploring Stats models Packages:

The easiest way to install stats models is to install it as part of the Anaconda distribution, a cross-platform

distribution for data analysis and scientific computing. This is the recommended installation method for

most users.

Instructions for installing from PyPI, source or a development version are also provided.

Python Support

Stats models supports Python 3.8, 3.9, and 3.10.

Anaconda

Stats models is available through conda provided by Anaconda. The latest release can be installed using:

conda install -c conda-forge stats models

PyPI (pip)

To obtain the latest released version of stats models using pip:

https://docs.continuum.io/anaconda/
https://www.anaconda.com/products/individual#Downloads

This opens up Jupyter Notebook in the default browser.

Go to Anaconda Navigator -> Environments -> your environment (mine pandas-

tutorial) -> select Open with Jupyter Notebook

python -m pip install stats model.

Follow this link to our PyPI page to directly download wheels or source.

Exploring Pandas packages

Now select New -> Python X and enter the below lines and select Run.

https://pypi.org/project/statsmodels/
https://pypi.org/project/statsmodels/

Result:

 This completes installing Anaconda and running pandas on Jupyter Notebook.

AIM:

To write a python program to implement array indexing using numpy

ALGORITHM:

Step1: Start

Step2:Import necessary libraries-numpy

Step3: Using random module, seed for reproducibility

Step4: Create one dimensional, two dimensional array using randint

Step5: Access the elements by using the index for the different dimensional array. Step6:
Stop the Program

PROGRAM:

import numpy as np

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array print(x1)

print(x1[0])

print(x1[4])

#To index from the end of the array, negative indices are used print(x1[-

1])

print(x1[-2])

#In a multidimensional array, items are accessed using a comma-separated tuple

EX.NO:2
ARRAY INDEXING using NUMPY

DATE:

#of indices:

print(x2) print(x2[0,

0])

print(x2[2, 0])

print(x2[2, -1])

#modifying values using index notation:

x2[0, 0] = 12

print(x2)

x1[0] = 3.14159 # this will be truncated!

print(x1)

OUTPUT

[5 0 3 3 7 9]

5

7

9

7

[[3 5 2 4]

[7 6 8 8]

[1 6 7 7]]

3

1

7

[[12 5 2 4]

[7 6 8 8]

[1 6 7 7]]

[3 0 3 3 7 9]

INFERENCE:

Array indexing is required for accessing the elements in that array. In the above program I have learnt to

implement array indexing using numpy for a three dimensional array.

RESULT: This program was successfully executed using NUMPY.

AIM:

To write a python program to implement array slicing using numpy

ALGORITHM:

Step1: START
Step2: Import necessary libraries -numpy

Step 3:Using arrange function, print n elements

Step 4:By using the slice method, [x:n] , array slicing can be done

Step 5: Similarly, array slicing for the two dimensional array can be done Step 6:
STOP

PROGRAM:

import numpy as np

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array print(x1)

print(x1[0])

print(x1[4])

#To index from the end of the array, negative indices are used print(x1[-

1])

print(x1[-2])

#In a multidimensional array, items are accessed using a comma-separated tuple #of

indices:

EX.NO: 3

ARRAY SLICING using NUMPY

DATE:

print(x2) print(x2[0,

0])

print(x2[2, 0])

print(x2[2, -1])

#modifying values using index notation:

x2[0, 0] = 12

print(x2)

x1[0] = 3.14159 # this will be truncated!

print(x1)

OUTPUT:

[5 0 3 3 7 9]

5

7

9

7

[[3 5 2 4]

[7 6 8 8]

[1 6 7 7]]

3

1

7

[[12 5 2 4]

[7 6 8 8]

[1 6 7 7]]

[3 0 3 3 7 9]

INFERENCE:

Array slicing is required for accessing certain the elements in that array. In the above program I have learnt

to implement array slicing using numpy.

RESULT: This program was successfully executed using NUMPY.

AIM:

To write a python program to implement subarrays using numpy

ALGORITHM:

Step 1:START
Step 2:Import the necessary libraries – numpy

Step 3:Usingrandint and random module create a two dimensional array Step

4:Extract a n*n subarray from main array
Step 5:print the elements in sub array
Step 6:STOP

PROGRAM:

import numpy as np
x = np.arange(10)
print(x)
print(x[:5]) # first five elements
print(x[5:]) # elements after index 5
print(x[4:7]) # middle subarray
print(x[::2])# every other element
print(x[1::2])# every other element, starting at index 1
print(x[::-1]) # all elements, reverse
print(x[5::-2]) # reversed every other from index 5
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array
print(x2)
print(x2[:2, :3]) # two rows, three columns
print(x2[:3, ::2]) # all rows, every other column
print(x2[::-1, ::-1])#subarray dimensions reversed together
print(x2[:, 0]) # first column of x2
print(x2[0, :]) # first row of x2
print(x2[0]) # equivalent to x2[0, :]

OUTPUT:
[0 1 2 3 4 5 6 7 8 9]

[0 1 2 3 4]

[5 6 7 8 9]

EX.NO:4
SUBARRAYS using NUMPY

DATE:

[4 5 6]

[0 2 4 6 8]

[1 3 5 7 9]

[9 8 7 6 5 4 3 2 1 0]

[5 3 1]

[[6 4 3 4]

[8 6 0 6]

[4 7 2 1]]

[[6 4 3]

[8 6 0]]

[[6 3]

[8 0]

[4 2]]

[[1 2 7 4]

[6 0 6 8]

[4 3 4 6]]

[6 8 4]

[6 4 3 4]

[6 4 3 4]

INFERENCE:

Sub arrays are required for further processing. From this program, we learnt to extract a sub array from

the main two dimensional array and print the elements in sub array

RESULT: This program was successfully executed using NUMPY.

EX.NO:5
DATA INDEXING AND SELECTION USING PANDAS

DATE:

AIM:

To write a python program to implement data indexing and selection using pandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries – pandas

Step 3:Create a series using series module from pandas

Step 4:Creat a rows and columns (i.e) index and values respectively using pandas series function Step
5:print the one dimensional array within a range using string slicing
Step 6:STOP

PROGRAM:

#Subarrays as no-copy views
import numpy as np
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

#extract a 2×2 subarray from this
x2_sub = x2[:2, :2]
print(x2_sub)

#if we modify this subarray, we’ll see that the original array is changed!
x2_sub[0, 0] = 99
print(x2_sub)
print(x2)
#when we work with large datasets, we can access and process pieces of these datasets without the
need to copy the underlying data buffer.

OUTPUT:

[[0 1]

[8 4]]

[[99 1]

[8 4]]

[[99 1 2 2]

[8 4 5 9]

[9 3 6 5]]

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this program, we
learnt to construct series as objects using pandas libraries.

RESULT: This program was successfully executed using PANDAS.

EX.NO:6

OBJECT as Series using PANDAS

DATE:

AIM:

To write a python program to implement object as series using pandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries-numpy,pandas.
Step 3:Create a series using numpy array

Step 4:Create a specialized dictionary and build a series. Step
5:print the series by using the pandas

Step 6:STOP

PROGRAM:

#PANDAS SERIES AS OBJECT

importnumpyas np

import pandas as pd

data = pd.Series([0.25, 0.5, 0.75, 1.0])

print(data)

print(data.values)

print(data.index)

print(data[1])

print(data[1:3])

#series as numpy array

data = pd.Series([0.25, 0.5, 0.75, 1.0],index=['a', 'b', 'c', 'd'])

print(data)

print(data['b'])

data = pd.Series([0.25, 0.5, 0.75, 1.0],index=[2, 5, 3, 7])

print(data)

print(data[5])

#series as specilized dictionary

population_dict = {'California': 38332521,

'Texas': 26448193,

'New York': 19651127,

'Florida': 19552860,

'Illinois': 12882135}

population = pd.Series(population_dict)

print(population)

print(population['California'])

print(population['California':'Florida'])

#constructing series objects

a=pd.Series([2, 4, 6])

print(a)

b=pd.Series(5, index=[100, 200, 300])

print(b)

c=pd.Series({2:'a', 1:'b', 3:'c'})

print(c);

#after indexing

c=pd.Series({2:'a', 1:'b', 3:'c'}, index=[3, 2])

print(c)

OUTPUT:

0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64
[0.25 0.5 0.75 1.
]
RangeIndex(start=0, stop=4,
step=1) 0.5
1 0.50
2 0.75
dtype:
float64 a
 0.25
b 0.50
c 0.75
d 1.00
dtype:
float64 0.5
2 0.25

5 0.50

3 0.75
7 1.00

dtype:
float64 0.5
California 38332521
Texas 26448193
New York 19651127
Florida 19552860
Illinois 12882135
dtype:
int64
38332521
California 38332521
Texas 26448193
New York 19651127
Florida 19552860
dtype:
int64 0
 2

1 4
2 6

dtype: int64
100 5
200 5
300 5
dtype:
int64
2 a
1 b
3 c
dtype: object
3 c
2 a
dtype: object

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this problem, we

learnt to create a dataframe as specialized dictionary using pandas library functions

RESULT: This program was successfully executed using PANDAS.

AIM:

To write a python program to implement dataframe object series as specilized dictionary using pandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries-pandas

Step 3:Create a dictionary named population_dict.
Step 4:create a series by using the pandas libraries

Step 5:print the results.
Step 6:STOP

PROGRAM:

import pandas as pd

#PANDAS DATAFRAME OBJECT

#series as specilized dictionary

population_dict = {'California': 38332521,

'Texas': 26448193,

'New York': 19651127,

'Florida': 19552860,

'Illinois': 12882135}

population = pd.Series(population_dict)

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,'Florida':

170312, 'Illinois': 149995}

area = pd.Series(area_dict)

print(area)

print()

states = pd.DataFrame({'population': population,'area': area})

print(states)

print()

print(states.index)

print()

print(states.columns)

print()

#dataframe as specilized dictionary

EX.NO:7 DATAFRAME OBJECT SERIES AS SPECILIZED

DICTIONARY USING PANDAS
DATE:

print(states['area'])

print()

a= pd.DataFrame(population, columns=['population'])

print(a)

print()

OUTPUT:

California 423967

Texas 695662

New York 141297

Florida 170312

Illinois 149995

dtype: int64

population area

Index(['California', 'Texas', 'New York', 'Florida', 'Illinois'], dtype='object')

Index(['population', 'area'], dtype='object')

California 423967

Texas 695662

New York 141297

Florida 170312
Illinois 149995

Name: area, dtype: int64

population

California 38332521

Texas 26448193

New York 19651127

Florida 19552860
Illinois 12882135

California 38332521 423967

Texas 26448193 695662

New York 19651127 141297

Florida 19552860 170312
Illinois 12882135 149995

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this problem, we
learnt to have to create dataframe object series as specialized dictionary using pandas.

RESULT: This program was successfully executed using PANDAS.

AIM:

To write a python program to implement knn classification for use of iris dataset

ALGORITHM:

Step 1: Load and Train the IRIS data

Step 2: Initialize K to your chosen number of neighbours.

Step 3: For each example in the data

i. Calculate the distance between the query example and the current example from the
data.

ii. Add the distance and the index of the example to an ordered collection.

iii. Sort the ordered collection of distances and indices from smallest to largest (in

ascending order) by the distances

iv. Pick the first K entries from the sorted collection

v. Get the labels of the selected K entries

vi. Classify the new category as the mode of the K labels and return type

PROGRAM:

Make Predictions with k-nearest neighbors on the Iris Flowers Dataset from csv import

reader

from math import sqrt

Load a CSV file

def load_csv(filename): dataset = list()

with open(filename, 'r') as file: csv_reader = reader(file) for row in csv_reader: if not
row:

continue dataset.append(row)
return dataset

Convert string column to float

def str_column_to_float(dataset, column): for
row in dataset:
row[column] = float(row[column].strip())

Convert string column to integer

def str_column_to_int(dataset, column):
class_values = [row[column]

EX.NO:8
KNN CLASSIFICATION FOR USE OF IRIS DATASET

DATE:

for row in dataset] unique = set(class_values)

lookup = dict()
for i, value in enumerate(unique): lookup[value] = i print('[%s] =>
%d' % (value, i)) for row in dataset: row[column] =
lookup[row[column]] return lookup
Find the min and max values for each column def
dataset_minmax(dataset):

minmax = list()
for i in range(len(dataset[0])):
col_values = [row[i] for row in dataset] value_min = min(col_values) value_max =
max(col_values)

minmax.append([value_min, value_max]) return minmax

Rescale dataset columns to the range 0-1 def
normalize_dataset(dataset, minmax):

for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])

Calculate the Euclidean distance between two vectors def
euclidean_distance(row1, row2):

distance = 0.0
for i in range(len(row1)-1):
distance += (row1[i] - row2[i])**2 return sqrt(distance)

Locate the most similar neighbors
def get_neighbors(train, test_row, num_neighbors): distances = list() for train_row
in train:
dist = euclidean_distance(test_row, train_row)
distances.append((train_row, dist))

distances.sort(key=lambda tup: tup[1]) neighbors = list()
for i in range(num_neighbors): neighbors.append(distances[i][0]) return neighbors

Make a prediction with neighbors
def predict_classification(train, test_row, num_neighbors): neighbors =
get_neighbors(train, test_row, num_neighbors) output_values = [row[-1] for row in
neighbors]
prediction = max(set(output_values), key=output_values.count) return prediction

Make a prediction with KNN on Iris Dataset filename = 'iris.csv' dataset =
load_csv(filename) for i in range(len(dataset[0])-1): str_column_to_float(dataset, i)
convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1) # define model parameter num_neighbors = 5
define a new record row = [5.1,3.7,1.5,0.4] # predict
the label
label = predict_classification(dataset, row, num_neighbors)
print('Data=%s, Predicted: %s' % (row, label))

OUTPUT:

[Setosa] => 0

[Versicolor] => 1

[Virginica] => 2

Data=[5.1, 3.7, 1.5, 0.4],

Predicted: 0

INFERENCE:
Classification is used to classify the given data into known groups. In this program we classify the IRIS

data.

RESULT: This program was successfully executed.

AIM:

To write a python program to implement classification using linear regression

ALGORITHM:

Step1: Consider a set of values x, y.

Step2: Take the linear set of equation y = a+bx.

Step3: Computer value of a, b with respect to the given values, b = n∑xy − (∑x) (∑y) /
n∑x2−(∑x)2, a = ∑y−b (∑x)n.

Step4: Implement the value of a, b in the equation y = a+ bx.

Step5: Regress the value of y for any x.

PROGRAM:

import numpy as np

import matplotlib.pyplot as plt
from csv import DictReader def
estimate_coef(x, y):

number of observations/points n
= np.size(x)

mean of x and y vector

m_x, m_y = np.mean(x), np.mean(y)

calculating cross-deviation and deviation about x
SS_xy = np.sum(y*x - n*m_y*m_x)
SS_xx = np.sum(x*x - n*m_x*m_x) #

calculating regression coefficients b_1
= SS_xy / SS_xx

b_0 = m_y - b_1*m_x
return(b_0, b_1)

def plot_regression_line(x, y, b):

plotting the actual points as scatter plot
plt.scatter(x, y, color = "m",

marker = "o", s = 30)

predicted response vector

y_pred = b[0] + b[1]*x
plotting the regression line

plt.plot(x, y_pred, color = "g")

EX.NO:9
CLASSIFICATION USING LINEAR REGRESSION

DATE:

putting labels
plt.xlabel('x')
plt.ylabel('y')

function to show plot
plt.show()

def main():

observations
Data = []

X,Y=[],[]

opening csv file

with open('diabetes.csv','r') as file:

reader = DictReader(file)
for row in reader:

Data.append(row)

for i in Data: X.append(int(i['Glucose']))
Y.append(int(i['BloodPressure']))

x = np.array(X) y
= np.array(Y)
estimating coefficients b
= estimate_coef(x, y)

print("Estimated coefficients:\nb_0 = {} nb_1 = {}".format(b[0], b[1])) # plotting
regression line

plot_regression_line(x, y, b) if
name == " main ":
main()

OUTPUT:

INFERENCE:
Linear regression is knowing the relationship between two values .From this program we learnt about

the how to implement linear regression using python

RESULT: This program was successfully executed.

AIM:

To write a python program to implement classification using logistic regression

ALGORITHM:

Step1: Initialize the variables
Step2: Set the Data frame
Step3: Spilt data set into training and testing. Step4: Fit
the data into logistic regression function. Step5: Predict

the test data set.
Step6: Print the results.

PROGRAM:

importpandasaspd

fromsklearn.model_selectionimporttrain_test_split

fromsklearn.linear_modelimportLogisticRegression

fromsklearnimport metrics

import seaborn assn

importmatplotlib.pyplotasplt

fromcsvimportDictReader

Data = []

Glucose,BloodPressure,BMI,Outcome=[],[],[],[]

opening csv file

withopen('diabetes.csv','r') asfile:

reader = DictReader(file)

forrowinreader:

Data.append(row)

foriinData:

Glucose.append(int(i['Glucose']))

BloodPressure.append(int(i['BloodPressure']))

BMI.append(float(i["BMI"]))

Outcome.append(int(i["Outcome"]))

candidates =

{'Glucose':Glucose,'BMI':BMI,'BloodPressure':BloodPressure,'Outcome': Outcome}

EX.NO:10

CLASSIFICATION USING LOGISTIC REGRESSION

DATE:

df = pd.DataFrame(candidates,columns= ['Glucose',

'BMI','BloodPressure','Outcome'])

print (df)

print("Df printed\n")

X = df[['Glucose', 'BMI','BloodPressure']]

y = df['Outcome']

X_train,X_test,y_train,y_test =

train_test_split(X,y,test_size=0.25,random_state=0)

print (X_train)

print (y_train)

print("Train\n")

logistic_regression= LogisticRegression()

logistic_regression.fit(X_train,y_train)

y_pred=logistic_regression.predict(X_test)

confusion_matrix = pd.crosstab(y_test, y_pred, rownames=['Actual'],

colnames=['Predicted'])

sn.heatmap(confusion_matrix, annot=True)

print('Accuracy: ',metrics.accuracy_score(y_test, y_pred))

print (X_test) #test dataset

print (y_pred) #predicted values

print('confusion_matrix:', confusion_matrix, sep='\n', end='\n\n')
plt.show()

OUTPUT:

INFERENCE:

Logistic regression is an example of supervised learning. It is used to calculate or predict the probability of
a binary (yes/no) event occurring. From this program we learnt to draw the logistics regressions using
python

RESULT: This program was successfully executed.

AIM:

To write a python program to implement multiple regression analysis

ALGORITHM:

Step1: Get the multi-attribute dataset using the Scikit-learn data source. Step
2: Create a regression object.
Step 3: Train the dataset with the regression model fit.
Step 4: Get and print the regression coefficients and variance. Step 5.

Plot the residual error.

PROGRAM:

import matplotlib.pyplot as plt import numpy as np from

sklearn import datasets, linear_model, metrics # load the

boston dataset

boston = datasets.load_boston(return_X_y=False) # defining

feature matrix(X) and response vector(y)

X = boston.data y = boston.target

splitting X and y into training and testing sets from

sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,

random_state=1)

create linear regression object

reg = linear_model.LinearRegression()

train the model using the training sets reg.fit(X_train, y_train) # regression

coefficients print('Coefficients: ', reg.coef_)

EX.NO:12

MULTIPLE REGRESSION ANALYSIS

DATE:

variance score: 1 means perfect prediction print('Variance score:

{}'.format(reg.score(X_test, y_test))) # plot

for residual error

setting plot style plt.style.use('fivethirtyeight')

plotting residual errors in training data plt.scatter(reg.predict(X_train), reg.predict(X_train) - y_train,

color = "green", s = 10, label = 'Train data')

plotting residual errors in test data plt.scatter(reg.predict(X_test), reg.predict(X_test) - y_test,

color = "blue", s = 10, label = 'Test data') ##

plotting line for zero residual error

plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2) ##

plotting legend plt.legend(loc = 'upper right') ## plot title

plt.title("Residual errors")

method call for showing the plot plt.show()

OUTPUT:

Coefficients:

[-8.95714048e-02 6.73132853e-02

5.04649248e-02 2.18579583e+00

-1.72053975e+01 3.63606995e+00

2.05579939e-03 -1.36602886e+00

2.89576718e-01 -1.22700072e-02 -

8.34881849e-01 9.40360790e-03

-5.04008320e-01]

Variance score: 0.720905667266178

INFERENCE:

Multiple regression is a statistical technique that can be used to analyze the relationship between a single
dependent variable and several independent variables. The objective of multiple regression analysis is to
use the independent variables whose values are known to predict the value of the single dependent
value. From this program we learnt to draw the multiple linear regression.

RESULT: This program was successfully executed.

AIM:

To write a python program to implement normal curves

ALGORITHM:

Step1: Set the Mean as 0 and Standard Deviation as 1.
Step2: Generate the set x of 100 random numbers in the range of -5 to 5.
Step3: Define the probability density function using x.
Step4: Plot the Normal Distribution.

PROGRAM:

importnumpyasnp

importmatplotlib.pyplotasplt

fromscipyimport stats

Create a standard normal distribution with mean as 0 and standard deviation as

1

mu = 0

std = 1

snd = stats.norm(mu, std)

Generate 100 random values between -5, 5

x = np.linspace(-5, 5, 100)

Plot the standard normal distribution for different values of random variable

falling in the range -5, 5

plt.figure(figsize=(7.5,7.5))

plt.plot(x, snd.pdf(x))

plt.xlim(-5, 5)

plt.title('Normal Distribution', fontsize='15')

plt.xlabel('Values of Random Variable X', fontsize='15')

plt.ylabel('Probability', fontsize='15')

plt.show()

EX.NO: 13

NORMAL CURVES

DATE:

OUTPUT:

INFERENCE:
Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric
about the mean, showing that data near the mean are more frequent in occurrence than data far from the
mean. In graphical form, the normal distribution appears as a "bell curve". From this program we learnt to
draw a curve for normal distribution using matplotlib and numpy functions

RESULT: This program was successfully executed.

AIM:

To write a python program to implement correlation analysis

ALGORITHM:

Step1: Compute the value of x̄ & ȳ.

Step 2: Compute

Step 3: Compute

Step 4: Find it is highly correlated or low correlated and display the result.

PROGRAM:

Python Program to find correlation coefficient. import math

function that returns correlation coefficient. def correlationCoefficient(X, Y, n) : sum_X = 0

sum_Y = 0

sum_XY = 0

squareSum_X = 0

squareSum_Y = 0

i = 0

while i<n :

sum of elements of array X. sum_X = sum_X + X[i]

EX.NO: 14

CORRELATION ANALYSIS

DATE:

sum of elements of array Y. sum_Y = sum_Y + Y[i]

sum of X[i] * Y[i].

sum_XY = sum_XY + X[i] * Y[i]

sum of square of array elements. squareSum_X = squareSum_X + X[i] * X[i]

squareSum_Y = squareSum_Y + Y[i] * Y[i]

i = i + 1

use formula for calculating correlation # coefficient.

corr = (float)(n * sum_XY - sum_X * sum_Y)/ (float)(math.sqrt((n * squareSum_X

-sum_X * sum_X)* (n * squareSum_Y - sum_Y * sum_Y))) return corr

Driver function

X = [15, 18, 21, 24, 27]

Y = [25, 25, 27, 31, 32]

print(X) print(Y)

Find the size of array. n = len(X)

Function call to correlationCoefficient. z = correlationCoefficient(X, Y, n) if(abs(z) > 0.5):

print ('{0:.6f}'.format(z), "Highly COrrelated") else: print('{0:.6f}'.format(z),"Low

Correlated")

OUTPUT:

[15, 18, 21, 24, 27]

[25, 25, 27, 31, 32]

0.953463 Highly Correlated

INFERENCE:
Correlation is a statistical measure that expresses the extent to which two variables are linearly related
(meaning they change together at a constant rate). It's a common tool for describing simple relationships
without making a statement about cause and effect. From this program we learnt about the correlation
analysis technique using python

RESULT: This program was successfully executed.

AIM:

To write a python program to implement mean, median, mode and standard deviation.

ALGORITHM:

Step1: Take a list of 8 Numbers.
Step2: Compute the Mean value by simple Computation and print it. Step3:
Compute the Mean value using numpy method and print it.
Step4: Compute the Median value by simple Computation and print it. Step5:
Compute the Mode value by simple Computation and print it. Step6:
Compute the Mode value using numpy method and print it.
Step7: Compute the Standard Deviation by simple Computation and print it. Step8:
Compute the Standard Deviation using Numpy and print it.

PROGRAM:

Write a program to compute mean, median, mode and Standard Deviation import
numpy as np
from collections import Counter
from scipy import stats
Finding Mean by simple Computation a=
[11, 21, 34, 22, 27, 11, 23, 21]
mean = sum(a)/len(a)
print("Finding Mean by simple Computation") print
(mean)
Finding Mean using numpy method
mean = np.mean(a)
print("Finding Mean using numpy method ") print
(mean)
#Finding Median by simple Computation. def
median(nums):

nums.sort()
if len(nums)%2 == 0:

return int(nums[len(nums)//2-1]+nums[len(nums)//2])/2 else:
return nums[len(nums)//2]

print("Finding Median by simple Computation") print
(median(a))
print("Finding Median by numpy method")

EX.NO: 15
MEAN,MEDIAN, MODE, STANDARD DEVIATION

DATE:

print(np.median(a))
Finding Mode by simple Computation data
= dict(Counter(a))
mode = [k for k, v in data.items() if v == max(list(data.values()))] print("Finding
Mode by simple Computation ")
print (mode)
Finding Mode using numpy method print("Finding
Mode using numpy method") print
(stats.mode(a,axis=None,keepdims=True)) # Find
Standard deviation by simple computation n=len(a)
std=(sum(map(lambda x: (x-sum(a)/n)**2,a))/n)**0.5
print(std)
Find Standard deviation using numpy method print
(np.std(a))

OUTPUT:

Finding Mean by simple Computation
21.25
Finding Mean using numpy method
21.25
Finding Median by simple Computation 21.5
Finding Median by numpy method
21.5
Finding Mode by simple Computation [11,
21]
Finding Mode using numpy method
ModeResult(mode=array([11]), count=array([2]))
7.1545440106270926
7.1545440106270926

INFERENCE:

Mean, median, mode and standard deviation are used for data analysis in data science. From this

program we have learnt how to calculate Mean, median, mode and standard deviation using simple

method and numpy method.

RESULT: This program was successfully executed

AIM:

To write a python program to implement data visualization

ALGORITHM:

Step1: Load the IRIS Dataset and Wine Review Dataset Step
2: Create the Color Scatter Plot of IRIS Dataset.
Step 3: Create the Line chart for each attributes of IRIS Dataset. Step 4:
Create the Histogram for Wine Review Scores.
Step 5: Create the Bar Chart for Wine Review Scores.
Step 6: Create the multiple histogram for attributes of IRIS Dataset.
Step 7: Create the vertical bar chart for Wine Review Scores using plot.bar(). Step 8:
Create the horizontal bar chart for Wine Review Scores using plot.bar().
Step 9: Create the bar chart for Wine Review with highest cost five different Counties.

PROGRAM:

import pandas as pd import numpy as np import

matplotlib.pyplot as plt

iris = pd.read_csv('iris.csv', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class'])

print(iris.head())

wine_reviews = pd.read_csv('winemag-data-130k-v2.csv', index_col=0)

wine_reviews.head()

Create Color Scatter Plotting

colors = {'Iris-setosa':'r', 'Iris-versicolor':'g', 'Iris-virginica':'b'} # create a figure and axis

fig, ax = plt.subplots() # plot each data-point for i in

range(len(iris['sepal_length'])):

EX.NO: 14
DATA VISUALIZATION

DATE:

ax.scatter(iris['sepal_length'][i], iris['sepal_width'][i],color=colors[iris['class'][i]]) # set a title and

labels

ax.set_title('Iris Dataset') ax.set_xlabel('sepal_length')

ax.set_ylabel('sepal_width')plt.show()

Create Line Chart Plotting columns = iris.columns.drop(['class']) # create x data x_data = range(0,

iris.shape[0]) # create figure and axis

fig, ax = plt.subplots() # plot each column for

column in columns:

ax.plot(x_data, iris[column], label=column) # set title and legend ax.set_title('Iris

Dataset') ax.legend()

plt.show()

create figure and axis fig, ax = plt.subplots() # plot histogram ax.hist(wine_reviews['points']) # set title

and labels

ax.set_title('Wine Review Scores') ax.set_xlabel('Points')

ax.set_ylabel('Frequency') plt.show()

create a figure and axis fig, ax = plt.subplots() # count

the occurrence of each class

data = wine_reviews['points'].value_counts() # get x and y data

points = data.index frequency = data.values # create bar chart ax.bar(points, frequency) # set title

and labels

ax.set_title('Wine Review Scores') ax.set_xlabel('Points')

ax.set_ylabel('Frequency') plt.show()

iris.plot.hist(subplots=True, layout=(2,2), figsize=(10, 10), bins=20) plt.show()

wine_reviews['points'].value_counts().sort_index().plot.bar() plt.show()

wine_reviews['points'].value_counts().sort_index().plot.barh() plt.show()

wine_reviews.groupby("country").price.mean().sort_values(ascending=False)[:5

].plo t.bar()

plt.show()

Correlation Matrix corr = iris.corr() fig, ax =

plt.subplots() # create heatmap im =

ax.imshow(corr.values)

set labels ax.set_xticks(np.arange(len(corr.columns)))

ax.set_yticks(np.arange(len(corr.columns))) ax.set_xticklabels(corr.columns)

ax.set_yticklabels(corr.columns)

Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45,

ha="right",

rotation_mode="anchor")

Loop over data dimensions and create text annotations. for i in

range(len(corr.columns)):

for j in range(len(corr.columns)):

text = ax.text(j, i, np.around(corr.iloc[i, j], decimals=2), ha="center",

va="center", color="black")

plt.show()

OUTPUT:

Line chart for each attribute of IRIS Dataset

Bar Chart for Wine Review Scores

Multiple histogram for attributes of IRIS Dataset

Vertical bar chart for Wine Review Scores

Horizontal bar chart for Wine Review Score

Bar chart for Wine Review with highest cost five different Counties.

Correlation Matrix

INFERENCE:

Data visualization is a way to represent information graphically, highlighting patterns and trends in data
and helping the reader to achieve quick insights. From this program we learnt how to visualize data using
python.

RESULT: This program was successfully executed.

 CONTENT BEYOND SYLLABUS

AIM:

To write a python Application Program to demonstrate the Principal Component Analysis.

ALGORITHM:

Step 1: Get data.
Step 2: Compute the mean vector (µ). Step 3:
Subtract mean from the given data. Step 4:
Calculate the covariance matrix.
Step 5: Calculate the eigen vectors and eigen values of the covariance matrix. Step
6: Choosing components and forming a feature vector.
Step 7: Deriving the new data set.

PROGRAM:

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import seaborn as sns

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

cancer.keys()

df = pd.DataFrame(cancer['data'],columns=cancer['feature_names'])

df.head()

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

EX.NO: 15
PRINCIPAL COMPONENT ANALYSIS

DATE:

scaler.fit(df)

scaled_data = scaler.transform(df)

from sklearn.decomposition import PCA

pca = PCA(n_components=2)

pca.fit(scaled_data)
x_pca = pca.transform(scaled_data)
print(“Actual size”,scaled_data.shape)
print(“After PCA”,x_pca.shape)
plt.figure(figsize=(8,6))
plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'],cmap='rainbow') plt.xlabel('First
principal component')
plt.ylabel('Second Principal Component')
plt.show()
map= pd.DataFrame(pca.components_,columns=cancer['feature_names'])
plt.figure(figsize=(12,6))
sns.heatmap(map,cmap='twilight') plt.show()

OUTPUT:

 INFERENCE:

Principal components analysis (PCA) is a dimensionality reduction technique that enables you to identify

correlations and patterns in a data set so that it can be transformed into a data set of significantly lower

dimension without loss of any important information. From this program we learnt how to implement a

PCA using python.

RESULT: This program was successfully executed.

	OBJECTIVES:
	TOTAL : 60 PERIODS
	INSTALLING ANACONDA ON WINDOWS
	Steps:
	1. Visit the Anaconda downloads page
	2. Select Windows
	3.Download
	Begin with the installation process: Getting Started:
	Choose Installation Location:
	 Getting through the Installation Process:
	 Finishing up the Installation:
	Working with Anaconda:
	Exploring NumPy Packages:
	Installing NumPy
	Install NumPy on Anaconda
	Install NumPy with the Anaconda Prompt
	Verify NumPy installation
	Exploring SciPy Packages:
	Installing Via Conda
	Exploring Juypter Packages:
	Installing Jupyter on Windows using the Anaconda Prompt
	Exploring Stats models Packages:
	Python Support
	Anaconda
	PyPI (pip)
	Exploring Pandas packages

	AIM:
	ALGORITHM:
	PROGRAM:
	OUTPUT
	INFERENCE:
	AIM: (1)
	ALGORITHM: (1)
	PROGRAM: (1)
	OUTPUT:
	INFERENCE: (1)
	AIM: (2)
	ALGORITHM: (2)
	PROGRAM: (2)
	OUTPUT: (1)
	INFERENCE: (2)
	AIM: (3)
	ALGORITHM: (3)
	PROGRAM: (3)
	OUTPUT: (2)
	INFERENCE: (3)
	AIM: (4)
	ALGORITHM: (4)
	PROGRAM: (4)
	OUTPUT: (3)
	INFERENCE: (4)
	AIM: (5)
	ALGORITHM: (5)
	PROGRAM: (5)
	OUTPUT: (4)
	INFERENCE: (5)
	AIM: (6)
	ALGORITHM: (6)
	PROGRAM: (6)
	OUTPUT: (5)
	INFERENCE: (6)
	AIM: (7)
	ALGORITHM: (7)
	PROGRAM: (7)
	OUTPUT: (6)
	AIM: (8)
	ALGORITHM: (8)
	PROGRAM: (8)
	OUTPUT: (7)
	AIM: (9)
	ALGORITHM: (9)
	PROGRAM: (9)
	OUTPUT: (8)
	INFERENCE: (7)
	AIM: (10)
	ALGORITHM: (10)
	PROGRAM: (10)
	OUTPUT: (9)
	AIM: (11)
	ALGORITHM: (11)
	PROGRAM: (11)
	OUTPUT: (10)
	INFERENCE: (8)
	AIM: (12)
	ALGORITHM: (12)
	PROGRAM: (12)
	OUTPUT: (11)
	INFERENCE: (9)
	AIM: (13)
	ALGORITHM: (13)
	PROGRAM: (13)
	OUTPUT: (12)
	INFERENCE: (10)
	CONTENT BEYOND SYLLABUS
	ALGORITHM: (14)
	PROGRAM: (14)
	OUTPUT: (13)

