MAHA BARATHI ENGINEERING COLLEGE

NH-79, SALEM-CHENNAI HIGHWAY, A.VASUDEVANUR, CHINNASALEM TK, KALLAKURICHI DT - 606 201.
Approved by AICTE, New Delhi & Affiliated to Anna University, Chennai
2(f) & 12(B) status of UGC, New Delhi,
www.mbec.ac.in | 04151-256333, 257333 | mbecl23@gmail.com

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CS3361 — DATA SCIENCE LAB MANUAL

[l Year/lll Semester B.E CSE

Regulation 2021
(As Per Anna University, Chennai syllabus)

Prepared By, Verified By,

P.AKILA N.KHADIRKUMAR
(AP/CSE) (HOD/CSE)

http://www.mbec.ac.in/
mailto:mbec123@gmail.com

CS3361 DATA SCIENCE LABORATORY LTPC
0042

OBJECTIVES:
e To understand the python libraries for data science
e To understand the basic Statistical and Probability measures for data science.
e To learn descriptive analytics on the benchmark data sets.
e To apply correlation and regression analytics on standard data sets.
e To present and interpret data using visualization packages in Python .

LIST OF EXPERIMENTS:
1. Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas
packages.

2. Working with Numpy arrays
3. Working with Pandas data frames

4. Reading data from text files, Excel and the web and exploring various commands for doing descriptive
analytics on the Iris data set.

5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:

a. Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and
Kurtosis.

b. Bivariate analysis: Linear and logistic regression modeling

. Multiple Regression analysis

. Also compare the results of the above analysis for the two data sets.
. Apply and explore various plotting functions on UCI data sets.

. Normal curves

. Density and contour plots

. Correlation and scatter plots

. Histograms

. Three dimensional plotting

7. Visualizing Geographic Data with Basemap

®© O O T 95 O Q O

TOTAL : 60 PERIODS
OUTCOMES:

On completion of this course, the students will be able to:
COL1: Make use of the python libraries for data science

CO2: Make use of the basic Statistical and Probability measures for data science.
COa3: Perform descriptive analytics on the benchmark data sets.
CO4: Perform correlation and regression analytics on standard data sets

CO5: Present and interpret data using visualization packages in Python.

INSTALLING ANACONDA ON WINDOWS

Anaconda distribution of Python is the best option for problem solvers who want to use Python. Anaconda
is free (although the download is large which can take time) and can be installed. Anaconda comes bundled
with about 600 packages pre-installed including NumPy, Matplotlib and SymPy. These three packages
are very useful for problem solvers and will be discussed in subsequent chapters.

Follow the steps below to install the Anaconda distribution of Python on Windows.

Steps:

Visit Anaconda.com/downloads

Select Windows

Download the .exe installer

Open and run the .exe installer

Open the Anaconda Prompt and run some Python code

o wDdpE

1. Visit the Anaconda downloads page
Go to the following link: Anaconda.com/downloads

The Anaconda Downloads Page will look something like this:

Anzcarda Clo et 5 =5
'._) ANACONDA Vihet s Anaconca? Procuets. Suppon Commnity About Resowces [o

Download Anaconda Distribution

Version 5,01 | Relewse Date. October 25, 2017

High-Performance Distribution Package Management Portal to Data Science

kaslly Instati 100U~ data scisnce Manage packages, dependencles Uncover Insights In yow- data and
packages and environments with conda create Interactive visualizations

88 Windows @ oS

2. Select Windows

Select Windows where the three operating systems are listed.

= Windows ' macOSs "} Linux

https://www.anaconda.com/download/
https://www.anaconda.com/download/

3.Download

Download the most recent Python 3 release. At the time of writing, the most recent release was the Python
Version. Python 2.7 is legacy Python. For problem solvers, select the Python 3.6 version.
If you are unsure if your computer is running a 64-bit or 32-bit version of Windows, select
64-bit as 64-bit Windowsis most common.

Anaconda 5.0.1 For Windows Installer

Python 3.6 version * Python 2.7 version *
& Download & Download
64-Bit Graphical Installer (515 MB 64-Bit Graphical Installer (500 MB
32-Bit Graphical Installer (420 MB) 32-Bnt Graphical Installer (403 MB)

Begin with the installation process:
Getting Started:

O Anaconda3 2019.10 (64-bit) Setup = X

Welcome to Anaconda3 2019.10
(64-bit) Setup

;}'
(A Setup will guide you through the installation of Anaconda3

ANACONDA.

2019. 10 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

| mext> | | cancel |

o Getting through the License Agreement:
2 Anaconda3 2019.10 (64-bit) Setup - X
License Agreement

) ANACONDA Please review the license terms before installing Anaconda3
2019, 10 (64-bit).

Press Page Down to see the rest of the agreement.

S S S S S S S s EEEEEE A
Anaconda End User License Agreement
Copyright 2015, Anaconda, Inc.
All rights reserved under the 3-clause BSD License:
Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:
v

If you accept the terms of the agreement, dlick I Agree to continue. You must accept the
agreement to install Anaconda3 2019. 10 (64-bit).

<osck [Thgee] | conce

Select Installation Type: Select Just Me if you want the software to be used by a single User

2 Anaconda3 2019.10 (64-bit) Setup - X

Select Installation Type

'.) ANACONDA Please select the type of installation you would like to perform for
Anaconda3 2013, 10 (64-bit).

Install for:

(® Just Me (recommended)

(O all Users (requires admin privileges)

e (T
Hnaconda, 1nc,

Choose Installation Location:

O Anaconda3 2019.10 (64-bit) Setup - X

Choose Install Location
J ANACONDA choose the folder in which to install Anaconda3 2019. 10 (64-bit).

Setup will install Anaconda3 2018. 10 (64-bit) in the following folder. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

| :\Users\Abhinav Singh\Anaconda3| Browse...

Space required: 2.9GB
Space available: 153.5GB

Anaconda, Inc,

<o [] [ot

Advanced Installation Option:

0 Anaconda3 2019.10 (64-bit) Setup — X

Advanced Installation Options
‘J ANACONDA customize how Anaconda integrates with Windows

Advanced Options

[C] add Anaconda to my PATH environment variable

Not recommended. Instead, open Anaconda with the Windows Start
menu and select "Anaconda (64-bit)". This “add to PATH" option makes
Anaconda get found before previously installed software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

Register Anaconda as my default Python 3.7

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatically
detect Anaconda as the primary Python 3.7 on the system.

Anaconda, Inc,

<gack [_mstal] | conce

Getting through the Installation Process:

2 Anaconda3 2019.10 (64-bit) Setup —

Installing

‘..) ANACONDA Please wait while Anaconda3 2018. 10 (64-bit) is being installed.

Setting up the package cache ...

Anaconda, Inc,

< Back Next >

Cancel

Recommendation to Install Pycharm:

0 Anaconda3 2019.10 (64-bit) Setup —

Anaconda3 2019.10 (64-bit)
‘:.) ANACONDA Anaconda + JetBrains

Anaconda and JetBrains are working together to bring you Anaconda-powered
environments tightly integrated in the PyCharm IDE.

PyCharm for Anaconda is available at:

https://www.anaconda.com/pycharm

ANACONDA.

Anaconda, Inc,

Finishing up the Installation:

2 Anaconda3 2019.10 (64-bit) Setup —

Thanks for installing Anaconda3!

o
l.n
",‘J Anaconda is the most popular Python data scdence platform.

Share your notebooks, packages, projects and environments
ANACONDA on Anaconda Cloud!

Learn more about Anaconda Cloud

Learn how to get started with Anaconda

| <Back Cancel

Working with Anaconda:

Once the installation process is done, Anaconda can be used to perform multiple operations. To begin
using Anaconda, search for Anaconda Navigator from the Start Menu in Windows

All Apps Documents Settings Web More al

Best match

<&
-') Anaconda Navigator (Anaconda3) ,f,'.
g App R

Search the web "
Anaconda Navigator (Anaconda3)

£ anaconda Navigator - See web results > App
£ anaconda navigator login >
£ anaconda navigator for pc > = oOpen

CS Run as administrator

I Open file location

-2 pin to Start

= pin to taskbar

@ Uninstall

£ anaconda Navigator (Anaconda3)

the .

) ANACONDA NAVIGATOR

Exploring NumPy Packages:

NumPy is a Python package used for numerical computation. NumPYy is one of the foundational packages
for scientific computing with Python. NumPy's core data type is the array and NumPy functions operate
on arrays.

Installing NumPy

Before NumPy's functions and methods can be used, NumPy must be installed. Depending on which
distribution of Python you use, the installation method is slightly different.

Install NumPy on Anaconda

If you installed the Anaconda distribution of Python, NumPy comes pre-installed and no further
installation steps are necessary.

If you use a version of Python from python.org or a version of Python that came with your operating
system, the Anaconda Prompt and conda or pip can be used to install NumPy.

Install NumPy with the Anaconda Prompt
To install NumPy, open the Anaconda Prompt and type:
> conda install numpy

Type y for yes when prompted.

Verify NumPy installation
To verify NumPy is installed, invoke NumPy's version using the Python REPL. Import NumPy and call

version attribute common to most Python packages.
In[1]:
import numpy as np
np.version

Out[1]:'1.16.4'
A version number like '1.16.4" indicates a successful NumPy installation.

Exploring SciPy Packages:

Installing With Pip

You can install SciPy from PyPI with pip:

python -m pip install scipy

Installing Via Conda

You can install SciPy from the defaults or conda-forge channels with conda:

conda install scipy

Exploring Juypter Packages:

Installing Juypter

The simplest way to install Jupyter notebooks is to download and install the Anaconda distribution of
Python. The Anaconda distribution of Python comes with Jupyter notebook included and no further
installation steps are necessary.

Installing Jupyter on Windows using the Anaconda Prompt

To install Jupyter on Windows, open the Anaconda Prompt and type:

> conda install jupyter

Type y for yes when prompted. Once Jupyter is installed, type the command below into the Anaconda

Prompt to open the Jupyter notebook file browser and start using Jupyter notebooks.
> jupyter notebook

Exploring Stats models Packages:

The easiest way to install stats models is to install it as part of the Anaconda distribution, a cross-platform
distribution for data analysis and scientific computing. This is the recommended installation method for
most users.

Instructions for installing from PyPI, source or a development version are also provided.

Python Support

Stats models supports Python 3.8, 3.9, and 3.10.

Anaconda

Stats models is available through conda provided by Anaconda. The latest release can be installed using:
conda install -c conda-forge stats models

PyPI (pip)

To obtain the latest released version of stats models using pip:

https://docs.continuum.io/anaconda/
https://www.anaconda.com/products/individual#Downloads

python -m pip install stats model.

Follow this link to our PyPI page to directly download wheels or source.

Exploring Pandas packages

Go to Anaconda Navigator -> Environments -> your environment (mine pandas-

tutorial) -> select Open with Jupyter Notebook

O

Eile Help

) ANACONDA NAVIGATOR

‘ﬁ' Home

| |

Installed

basze (root)

pandas-tukorial

- renmens I

* Learning

Mame e

Cpen Terminal
Open wikth Python
Cpen wikth IPyEhon

This opens up Jupyter Notebook in the default browser.

" Jupyter

Files Running Clusters
Select items to perform actions on them.
Do ~ W/

0 [AndroidStudioProjects

O [0 Contacts
O [3J Deskiop
[0 [Documents
[0 [Downloads
O [Drivers

O O eclip

[0 [eclipse-workspace-NEW

Quit Logout

Upload | MNew~ | &
MName + Last Modified File size

2 years ago

a year ago

3 days ago

4 months ago

4 hours ago

2 years ago

2 years ago

2 years ago

Now select New -> Python X and enter the below lines and select Run.

https://pypi.org/project/statsmodels/
https://pypi.org/project/statsmodels/

) Ju Dyter Untitled4 Last Checkpoint: a few seconds ago (unsaved changes)

File Edit View Insert Cell Kemel Help

-
=]

+ 2= A B 4 ¥ PR B C W Code v =

In [1]: import pandas as pd

In [2]: |pd._ version__

Reault

ﬂ Logout

F \ Python 3 (ipykernel) O

This completes installing Anaconda and running pandas on Jupyter Notebook.

ARRAY INDEXING using NUMPY

AIM:

To write a python program to implement array indexing using numpy

ALGORITHM:

Stepl: Start

Step2:Import necessary libraries-numpy

Step3: Using random module, seed for reproducibility

Step4: Create one dimensional, two dimensional array using randint

Step5: Access the elements by using the index for the different dimensional array.Step6:
Stop the Program

PROGRAM:

import numpy as np

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array

X2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional arrayprint(x1)
print(x1[0])

print(x1[4])

#To index from the end of the array, negative indices are usedprint(x1[-

1))
print(x1[-2])

#In a multidimensional array, items are accessed using a comma-separated tuple

#of indices:
print(x2) print(x2[0,
o))

print(x2[2, 0])
print(x2[2, -1])

#modifying values using index notation:
x2[0, 0] = 12

print(x2)

x1[0] = 3.14159 # this will be truncated!
print(x1)

OUTPUT
[503379]

5

[[352 4]
[768 8]
[1677]

12 5 2 4]
[7 68 8

[16 7 7]

[303379]

INFERENCE:

Array indexing is required for accessing the elements in that array. In the above program | havelearnt to
implement array indexing using numpy for a three dimensional array.

RESULT: This program was successfully executed using NUMPY.

ARRAY SLICING using NUMPY

AlIM:

To write a python program to implement array slicing using numpy

ALGORITHM:

Stepl: START

Step2: Import necessary libraries -numpy

Step 3:Using arrange function, print n elements

Step 4:By using the slice method, [x:n], array slicing can be done

Step 5: Similarly, array slicing for the two dimensional array can be doneStep 6:
STOP

PROGRAM:

import numpy as np

np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array

X2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional arrayprint(x1)
print(x1[0])

print(x1[4])

#To index from the end of the array, negative indices are usedprint(x1[-

1))
print(x1[-2])

#In a multidimensional array, items are accessed using a comma-separated tuple#of

indices:

print(x2) print(x2[0,

0])
print(x2[2, 0])
print(x2[2, -1])

#modifying values using index notation:
x2[0, 0] = 12

print(x2)

x1[0] = 3.14159 # this will be truncated!
print(x1)

OUTPUT:

[5033709]

352 4]
[7688]
[1677]

12 5 2 4]
[7 68 8
[167 7]

[303379]

INFERENCE:

Array slicing is required for accessing certain the elements in that array. In the above program Ihave learnt
to implement array slicing using numpy.

RESULT: This program was successfully executed using NUMPY.

SUBARRAYS using NUMPY

AlIM:

To write a python program to implement subarrays using numpy

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries — numpy

Step 3:Usingrandint and random module create a two dimensional arrayStep
4:Extract a n*n subarray from main array

Step 5:print the elements in sub array

Step 6:STOP

PROGRAM:

import numpy as np

X = np.arange(10)

print(x)

print(x[:5]) # first five elements

print(x[5:]) # elements after index 5

print(x[4:7]) # middle subarray

print(x[::2])# every other element

print(x[1::2])# every other element, starting at index 1
print(x[::-1]) # all elements, reverse

print(x[5::-2]) # reversed every other from index 5

x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array
print(x2)

print(x2[:2, :3]) # two rows, three columns

print(x2[:3, ::2]) # all rows, every other column
print(x2[::-1, ::-1])#subarray dimensions reversed together
print(x2[:, 0]) # first column of x2

print(x2[0, :]) # first row of x2

print(x2[0]) # equivalent to x2[0, :]

OUTPUT:
[0123456789]
[01234]

[56789]

[456]
(0246 8]
[13579]
[9876543210]
[531]
[[6 43 4]
[8606]
[4721]]
([643]
(860]]
([63]
(80]
(42]]
[[1274]
(606 8]
[4346]]
(68 4]
[6434]

(643 4]

INFERENCE:

Sub arrays are required for further processing. From this program, we learnt to extract a subarray from
the main two dimensional array and print the elements in sub array

RESULT: This program was successfully executed using NUMPY.

EX.NO:5

DATA INDEXING AND SELECTION USING PANDAS
DATE:

AlIM:

To write a python program to implement data indexing and selection using pandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries — pandas

Step 3:Create a series using series module from pandas

Step 4:Creat a rows and columns (i.e) index and values respectively using pandas series functionStep
5:print the one dimensional array within a range using string slicing

Step 6:STOP

PROGRAM:

#Subarrays as no-copy views
import numpy as np
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array

Hextract a 2x2 subarray from this
x2_sub=x2[:2, :2]
print(x2_sub)

#if we modify this subarray, we’ll see that the original array is changed!

x2_sub[0, 0] =99

print(x2_sub)

print(x2)

#when we work with large datasets, we can access and process pieces of these datasets without the
need to copy the underlying data buffer.

OUTPUT:

([01]

(84]]
([99 1]
(8 4]]

[[99 1 2 2]

[8 45 9]

[9 36 5]]

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this program,we
learnt to construct series as objects using pandas libraries.

RESULT: This program was successfully executed using PANDAS.

OBJECT as Series using PANDAS

AlIM:

To write a python program to implement object as series using pandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries-numpy,pandas.

Step 3:Create a series using numpy array

Step 4:Create a specialized dictionary and build a series.Step
5:print the series by using the pandas

Step 6:STOP

PROGRAM:

#PANDAS SERIES AS OBJECT

importnumpyas np

import pandas as pd

data = pd.Series([0.25, 0.5, 0.75, 1.0])

print(data)

print(data.values)

print(data.index)

print(data[1])

print(data[1:3])

#series as numpy array

data = pd.Series([0.25, 0.5, 0.75, 1.0],index=["'a', 'b', 'c'

print(data)

print(data['b'])

data = pd.Series([0.25, 0.5, 0.75, 1.0],index=[2, 5, 3, 7])

print(data)

print(data[5])

#series as specilized dictionary

population_dict = {'California’': 38332521,
'Texas': 26448193,
"New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135}

population = pd.Series(population_dict)

print(population)

print(population['California’])

print(population['California':'Florida’'])
#constructing series objects
a=pd.Series([2, 4, 6])

print(a)

b=pd.Series(5, index=[100, 200, 300])
print(b)

c=pd.Series({2:'a', 1:'b', 3:'c'})
print(c);

#tafter indexing

c=pd.Series({2:'a"', 1:'b", 3:'c'}, index=[3, 2])
print(c)

OUTPUT:

0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64
[0.250.5 0.75 1.
]
Rangelndex(start=0, stop=4,
step=1)0.5
1 0.50
2 0.75
dtype:
float64a

0.25
b 0.50
¢ 0.75
d 1.00
dtype:
float640.5
2 0.25
5 0.50
3 0.75
7 1.00
dtype:
float640.5
California 38332521
Texas 26448193
New York 19651127
Florida 19552860
Illinois 12882135
dtype:
int64
38332521
California 38332521
Texas 26448193
New York 19651127
Florida 19552860
dtype:
int640

2

1 4
2 6

dtype: int64
100 5
200 5
300 5
dtype:
int64
2 a
1 b
3 ¢C
dtype: object
3 ¢
2 a
dtype: object

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this problem,we
learnt to create a dataframe as specialized dictionary using pandas library functions

RESULT: This program was successfully executed using PANDAS.

DATAFRAME OBJECT SERIES AS SPECILIZED
DICTIONARY USING PANDAS

AlIM:

To write a python program to implement dataframe object series as specilized dictionary usingpandas

ALGORITHM:

Step 1:START

Step 2:Import the necessary libraries-pandas

Step 3:Create a dictionary named population_dict.
Step 4.create a series by using the pandas libraries
Step 5:print the results.

Step 6:STOP

PROGRAM:

import pandas as pd

#PANDAS DATAFRAME OBJECT

#series as specilized dictionary

population dict = {'California': 38332521,
'Texas': 26448193,
"New York': 19651127,
'Florida': 19552860,
'Illinois': 12882135}

population = pd.Series(population_dict)

area _dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,'Florida’:

170312, 'Illinois': 149995}

area = pd.Series(area_dict)

print(area)

print()

states = pd.DataFrame({'population’': population, 'area': area})

print(states)

print()

print(states.index)

print()

print(states.columns)

print()

#dataframe as specilized dictionary

print(states['area'])

print()

a= pd.DataFrame(population, columns=['population'])
print(a)

print()

OUTPUT:

California 423967
Texas 695662
New York 141297
Florida 170312
Illinois 149995

dtype: int64
population area

California 38332521 423967
Texas 26448193 695662
New York 19651127 141297
Florida ~ 19552860 170312
[llinois 12882135 149995

Index(['California’, 'Texas', 'New York', 'Florida’, 'lllinois'], dtype='object")

Index(['population’, 'area’], dtype="'object’)

California 423967
Texas 695662
New York 141297
Florida 170312
Illinois 149995

Name: area, dtype: int64
population

California 38332521
Texas 26448193
New York 19651127
Florida 19552860
Illinois 12882135

INFERENCE:

Pandas are packages that can be added to python for doing the data analysis. From this problem,we
learnt to have to create dataframe object series as specialized dictionary using pandas.

RESULT: This program was successfully executed using PANDAS.

EX.NO:8

KNN CLASSIFICATION FOR USE OF IRIS DATASET
DATE:

AlIM:

To write a python program to implement knn classification for use of iris dataset

ALGORITHM:

Step 1: Load and Train the IRIS data
Step 2: Initialize K to your chosen number of neighbours.
Step 3: For each example in the data

Calculate the distance between the query example and the current example from the
data.
Add the distance and the index of the example to an ordered collection.
Sort the ordered collection of distances and indices from smallest to largest (in
ascendingorder) by the distances

iv. Pick the first K entries from the sorted collection
Get the labels of the selected K entries

i. Classify the new category as the mode of the K labels and return type

PROGRAM:

Make Predictions with k-nearest neighbors on the Iris Flowers Dataset from csvimport

reader
from math import sqrt

Load a CSV file

def load_csv(filename): dataset = list()

with open(filename, 'r") as file: csv_reader = reader(file) for row in csv_reader:if not
row:

continue dataset.append(row)

return dataset

Convert string column to float

def str_column_to_float(dataset, column):for
row in dataset:

row[column] = float(row[column].strip())

Convert string column to integer
def str_column_to_int(dataset, column):
class_values = [row[column]

for row in dataset] unique = set(class_values)
lookup = dict()
fori, value in enumerate(unique): lookup[value] = iprint('[%s] =>
%d' % (value, i)) for row in dataset: row[column] =
lookup[row[column]] return lookup
Find the min and max values for each column def
dataset_minmax(dataset):
minmax = list()
foriinrange(len(dataset[0])):
col_values = [row][i] for row in dataset] value_min = min(col_values)value_max =
max(col_values)

minmax.append([value_min, value_max]) return minmax

Rescale dataset columns to the range
normalize_dataset(dataset, minmax):

for row in dataset:
foriinrange(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])

Calculate the Euclidean distance between two vectors def
euclidean_distance(row1, row2):

distance = 0.0
foriinrange(len(rowl)-1):
distance += (row1[i] - row2[i])**2 return sqrt(distance)

Locate the most similar neighbors

def get_neighbors(train, test_row, num_neighbors): distances = list()for train_row

in train:

dist = euclidean_distance(test_row, train_row)
distances.append((train_row, dist))

distances.sort(key=lambda tup: tup[1]) neighbors = list()
foriin range(num_neighbors): neighbors.append(distances[i][0])return neighbors

Make a prediction with neighbors

def predict_classification(train, test_row, num_neighbors): neighbors =
get_neighbors(train, test_row, num_neighbors) output_values = [row[-1] for row in
neighbors]

prediction = max(set(output_values), key=output_values.count) return prediction

Make a prediction with KNN on Iris Dataset filename = 'iris.csv' dataset =
load_csv(filename) for i in range(len(dataset[0])-1): str_column_to_float(dataset, i)
convert class column to integers

str_column_to_int(dataset, len(dataset[0])-1) # define model parameternum_neighbors =5
define a new record row =[5.1,3.7,1.5,0.4]# predict
the label

label = predict_classification(dataset, num_neighbors)
print('Data=%s, Predicted: %s' % (row, label))

OUTPUT:

[Setosa] => 0
[Versicolor] => 1
[Virginica] => 2
Data=[5.1, 3.7, 1.5, 0.4],
Predicted: 0

INFERENCE:

Classification is used to classify the given data into known groups. In this program we classifythe IRIS
data.

RESULT: This program was successfully executed.

EX.NO:9

CLASSIFICATION USING LINEAR REGRESSION

DATE:

AlIM:

To write a python program to implement classification using linear regression

ALGORITHM:

Stepl: Consider a set of values x, y.
Step2: Take the linear set of equation y = a+bx.
Step3: Computer value of a, b with respect to the given values, b = n)xy - (3x) Qy)/

nyx2-(3x)2, a= >y-b (3x)n.

Step4: Implement the value of a, b in the equation y = a+ bx.
Step5: Regress the value of y for any x.

PROGRAM:

import numpy as np

import matplotlib.pyplot as plt

from csv import DictReader def

estimate_coef(x, y):

number of observations/pointsn
= np.size(X)
mean of x and y vector

m_X, m_y = np.mean(x), np.mean(y)

calculating cross-deviation and deviation about x

SS Xy = np.sum(y*x - n*m_y*m_x)

SS XX =np.sum(X*x - n*m_x*m_x) #
calculating regression coefficientsb_1
=SS xy/SS_xx
b O=my-b 1*m x

return(b_0, b_1)

def plot_regression_line(x, vy, b):

plotting the actual points as scatter plot
plt.scatter(x, y, color ="m",

marker = "0", s = 30)

predicted response vector

y_pred = b[0] + b[1]*x
plotting the regression line

plt.plot(x, y_pred, color ="g")

putting labels
plt.xlabel('x")
plt.ylabel('y’)

function to show plot
plt.show()
def main():

observations

Data =[]
X Y=[1.00

opening csv file

with open('diabetes.csv','r'") as file:

reader = DictReader(file)
for row in reader:

Data.append(row)

for i in Data: X.append(int(i['Glucose))
Y.append(int(i['BloodPressure'))

X = np.array(X)y

= np.array(Y)

estimating coefficientsb

= estimate_coef(x, y)
print("Estimated coefficients:\nb_0 = {} nb_1 = {}".format(b[0], b[1]))# plotting

regression line
plot_regression_line(x, y, b) if
name =="main":
main()

OUTPUT:

]

INFERENCE:
Linear regression is knowing the relationship between two values .From this program we learnt about
the how to implement linear regression using python

RESULT: This program was successfully executed.

EX.NO:10

CLASSIFICATION USING LOGISTIC REGRESSION

DATE:

AlIM:

To write a python program to implement classification using logistic regression

ALGORITHM:

Stepl: Initialize the variables

Step2: Set the Data frame

Step3: Spilt data set into training and testing. Step4: Fit
the data into logistic regression function.Step5: Predict

the test data set.
Step6: Print the results.

PROGRAM:

importpandasaspd

fromsklearn.model selectionimporttrain_test split
fromsklearn.linear_modelimportLogisticRegression
fromsklearnimport metrics

import seaborn assn

importmatplotlib.pyplotasplt
fromcsvimportDictReader

Data = []
Glucose,BloodPressure,BMI,Outcome=[],[]1,[1,[1]
opening csv file
withopen('diabetes.csv','r') asfile:
reader = DictReader(file)
forrowinreader:
Data.append(row)
foriinData:
Glucose.append(int(i['Glucose']))
BloodPressure.append(int(i['BloodPressure']))
BMI.append(float(i["BMI"]))
Outcome.append(int(i["Outcome"]))

candidates =
{'Glucose"' :Glucose, 'BMI':BMI, 'BloodPressure':BloodPressure, 'Outcome’: Outcome}

df = pd.DataFrame(candidates,columns= ['Glucose’,

'BMI', 'BloodPressure', 'Outcome'])

print (df)

print("Df printed\n")

X = df[['Glucose', 'BMI', 'BloodPressure’']]

y = df['Outcome’]

X_train,X_test,y_train,y test =

train_test split(X,y,test size=0.25,random_state=0)

print (X_train)

print (y_train)

print("Train\n")

logistic_regression= LogisticRegression()
logistic_regression.fit(X_train,y_train)
y_pred=logistic_regression.predict(X test)

confusion matrix = pd.crosstab(y_test, y pred, rownames=['Actual'],
colnames=["Predicted'])

sn.heatmap(confusion_matrix, annot=True)

print('Accuracy: ',metrics.accuracy_score(y test, y pred))
print (X _test) #test dataset

print (y_pred) #predicted values

print('confusion _matrix:', confusion _matrix, sep='\n', end="\n\n")
plt.show()

OUTPUT:

Predicted

INFERENCE:

Logistic regression is an example of supervised learning. It is used to calculate or predict the probability of
a binary (yes/no) event occurring. From this program we learnt to draw the logistics regressions using
python

RESULT: This program was successfully executed.

EX.NO:12 MULTIPLE REGRESSION ANALYSIS

DATE:

AlIM:

To write a python program to implement multiple regression analysis

ALGORITHM:

Stepl: Get the multi-attribute dataset using the Scikit-learn data source.Step
2: Create a regression object.

Step 3: Train the dataset with the regression model fit.

Step 4: Get and print the regression coefficients and variance.Step 5.

Plot the residual error.

PROGRAM:

import matplotlib.pyplot as plt import numpy as np from
sklearn import datasets, linear_model, metrics # load the
boston dataset

boston = datasets.load_boston(return_X_y=False) # defining
feature matrix(X) and response vector(y)

X =boston.data y = boston.target

splitting X and y into training and testing sets from

sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4,
random_state=1)

create linear regression object

reg = linear_model.LinearRegression()

train the model using the training sets reg.fit(X_train, y_train)# regression

coefficients print('Coefficients: ', reg.coef)

variance score: 1 means perfect prediction print('Variance score:

{}.format(reg.score(X_test, y_test))) # plot

for residual error

setting plot style plt.style.use('fivethirtyeight')

plotting residual errors in training data plt.scatter(reg.predict(X_train),reg.predict(X_train) - y_train,
color ="green", s = 10, label = 'Train data')

plotting residual errors in test data plt.scatter(reg.predict(X_test),reg.predict(X_test) - y_test,
color ="blue", s =10, label = 'Test data')##

plotting line for zero residual error

plt.hlines(y = 0, xmin = 0, xmax = 50, linewidth = 2)##

plotting legend plt.legend(loc = 'upper right') ## plot title

plt.title("Residual errors")

method call for showing the plot plt.show()

OUTPUT:

Coefficients:

[-8.95714048e-02 6.73132853e-02
5.04649248e-02 2.18579583e+00
-1.72053975e+01 3.63606995e+00

2.05579939¢e-03 -1.36602886e+00
2.89576718e-01 -1.22700072e-02 -
8.34881849e-01 9.40360790e-03
-5.04008320e-01]

Variance score: 0.720905667266178

Residual errors

Train data
Test data

INFERENCE:

Multiple regression is a statistical technique that can be used to analyze the relationship between a single
dependent variable and several independent variables. The objective of multiple regression analysis is to

use the independent variables whose values are known to predict the value of the single dependent
value. From this program we learnt to draw the multiple linear regression.

RESULT: This program was successfully executed.

EX.NO: 13 NORMAL CURVES

DATE:

AlIM:

To write a python program to implement normal curves

ALGORITHM:

Stepl: Set the Mean as 0 and Standard Deviation as 1.

Step2: Generate the set x of 100 random numbers in the range of -5 to 5.
Step3: Define the probability density function using x.

Step4: Plot the Normal Distribution.

PROGRAM:

importnumpyasnp
importmatplotlib.pyplotasplt
fromscipyimport stats

Create a standard normal distribution with mean as © and standard deviation as
1

#

mu = 0

std = 1

snd = stats.norm(mu, std)

Generate 100 random values between -5, 5
= np.linspace(-5, 5, 100)

Plot the standard normal distribution for different values of random variable
falling in the range -5, 5

H OHF H O H X H OH OH

plt.figure(figsize=(7.5,7.5))

plt.plot(x, snd.pdf(x))

plt.xlim(-5, 5)

plt.title('Normal Distribution', fontsize='15")
plt.xlabel('Values of Random Variable X', fontsize='15")
plt.ylabel('Probability', fontsize='15")

plt.show()

OUTPUT:

Normal Distribution

Probability

Values of Random Variable X

INFERENCE:

Normal distribution, also known as the Gaussian distribution, is a probability distribution that is symmetric
about the mean, showing that data near the mean are more frequent in occurrence thandata far from the
mean. In graphical form, the normal distribution appears as a "bell curve". From this program we learnt to
draw a curve for normal distribution using matplotlib and numpy functions

RESULT: This program was successfully executed.

EX.NO: 14 CORRELATION ANALYSIS

DATE:

AlIM:

To write a python program to implement correlation analysis

ALGORITHM:

Stepl: Compute the value of X &Y.

n]
> 3\
E (X-2{Y-¥)
=1

Step 2: Compute

Step 3: Compute ;

Yo (=X)(yi-y)

Step 4: Find it is highly correlated or low correlated and display the result.

PROGRAM:

Python Program to find correlation coefficient. import math
function that returns correlation coefficient. def correlationCoefficient(X, Y, n) :sum_X =10
sum_Y =0
sum_XY =0
squareSum_X=0
squareSum_Y =0
i=0
while i<n :

sum of elements of array X. sum_X =sum_X + X[i]

sum of elements of array Y. sum_Y =sum_Y + Y[i]

sum of X[i] * Y[i].

sum_XY =sum_XY + X[i] * Y[i]

sum of square of array elements. squareSum_X = squareSum_X + X[i] *X[i]

squareSum_Y = squareSum_Y + Y[i] * Y[i]

i=i+1

use formula for calculating correlation # coefficient.

corr = (float)(n * sum_XY - sum_X * sum_Y)/ (float)(math.sqrt((n *squareSum_X

-sum_X * sum_X)* (n * squareSum_Y - sum_Y * sum_Y))) return corr

Driver function
X =[15, 18, 21, 24, 27]

Y =[25, 25, 27, 31, 32]

print(X) print(Y)

Find the size of array. n = len(X)

Function call to correlationCoefficient. z = correlationCoefficient(X, Y, n)if(abs(z) > 0.5):

print ('{0:.6f}'.format(z), "Highly COrrelated") else:print('{0:.6f}.format(z),"Low

Correlated")

OUTPUT:

[15, 18, 21, 24, 27]
[25, 25, 27, 31, 32]
0.953463 Highly Correlated

INFERENCE:

Correlation is a statistical measure that expresses the extent to which two variables are linearly related
(meaning they change together at a constant rate). It's a common tool for describing simple relationships
without making a statement about cause and effect. From this program we learnt about the correlation
analysis technique using python

RESULT: This program was successfully executed.

EX.NO: 15

MEAN,MEDIAN, MODE, STANDARD DEVIATION

DATE:

AlIM:

To write a python program to implement mean, median, mode and standard deviation.

ALGORITHM:

Stepl: Take alist of 8 Numbers.

Step2: Compute the Mean value by simple Computation and print it.Step3:
Compute the Mean value using numpy method and print it.

Step4: Compute the Median value by simple Computation and print it. Step5:
Compute the Mode value by simple Computation and print it. Step6:

Compute the Mode value using numpy method and print it.

Step7: Compute the Standard Deviation by simple Computation and print it.Step8:
Compute the Standard Deviation using Numpy and print it.

PROGRAM:

Write a program to compute mean, median, mode and Standard Deviationimport
numpy as np
from collections import Counter
from scipy import stats
Finding Mean by simple Computationa=
[11, 21, 34, 22, 27, 11, 23, 21]
mean = sum(a)/len(a)
print("Finding Mean by simple Computation)print
(mean)
Finding Mean using numpy method
mean = np.mean(a)
print("Finding Mean using numpy method ")print
(mean)
#Finding Median by simple Computation.def
median(nums):

nums.sort()

if len(nums)%2 == 0:

return int(nums[len(nums)//2-1]+nums[len(nums)//2])/2else:
return nums[len(nums)//2]

print("Finding Median by simple Computation")print
(median(a))
print("Finding Median by numpy method")

print(np.median(a))

Finding Mode by simple Computationdata

= dict(Counter(a))

mode = [k for k, v in data.items() if v == max(list(data.values()))]print("Finding
Mode by simple Computation ")

print (mode)

Finding Mode using numpy method print("Finding
Mode using numpy method") print
(stats.mode(a,axis=None,keepdims=True)) # Find
Standard deviation by simple computationn=len(a)
std=(sum(map(lambda x: (x-sum(a)/n)**2,a))/n)**0.5
print(std)

Find Standard deviation using numpy methodprint
(np.std(a))

OUTPUT:

Finding Mean by simple Computation
21.25

Finding Mean using numpy method

21.25

Finding Median by simple Computation21.5
Finding Median by numpy method

21.5

Finding Mode by simple Computation[11,
21]

Finding Mode using humpy method
ModeResult(mode=array([11]), count=array([2]))
7.1545440106270926
7.1545440106270926

INFERENCE:

Mean, median, mode and standard deviation are used for data analysis in data science. From this
program we have learnt how to calculate Mean, median, mode and standard deviation using simple

method and numpy method.

RESULT: This program was successfully executed

EX.NO: 14

DATA VISUALIZATION
DATE:

AlIM:

To write a python program to implement data visualization

ALGORITHM:

Stepl: Load the IRIS Dataset and Wine Review DatasetStep

2: Create the Color Scatter Plot of IRIS Dataset.

Step 3: Create the Line chart for each attributes of IRIS Dataset.Step 4:

Create the Histogram for Wine Review Scores.

Step 5: Create the Bar Chart for Wine Review Scores.

Step 6: Create the multiple histogram for attributes of IRIS Dataset.

Step 7: Create the vertical bar chart for Wine Review Scores using plot.bar(). Step 8:
Create the horizontal bar chart for Wine Review Scores using plot.bar().

Step 9: Create the bar chart for Wine Review with highest cost five different Counties.

PROGRAM:

import pandas as pd import numpy as npimport

matplotlib.pyplot as plt

iris = pd.read_csv('iris.csv', names=['sepal_length’, 'sepal_width’', 'petal_length','petal_width', 'class'])
print(iris.head())

wine_reviews = pd.read_csv('winemag-data-130k-v2.csv', index_col=0)

wine_reviews.head()

Create Color Scatter Plotting
colors = {'lris-setosa':'r', 'lris-versicolor':'g', 'lris-virginica':'b'} # create a figureand axis
fig, ax = plt.subplots() # plot each data-pointforiin

range(len(iris['sepal_length'])):

ax.scatter(iris['sepal_length'][i], iris['sepal_width'][i],color=colors[iris['class'][i]])# set a title and
labels
ax.set_title('Iris Dataset') ax.set_xlabel('sepal_length')

ax.set_ylabel('sepal_width')plt.show()

Create Line Chart Plotting columns =iris.columns.drop(['class']) # create x datax_data = range(0,
iris.shape[0]) # create figure and axis
fig, ax = plt.subplots() # plot each columnfor

column in columns:

ax.plot(x_data, iris[column], label=column) # set title and legendax.set_title('Iris

Dataset') ax.legend()

plt.show()

create figure and axis fig, ax = plt.subplots() # plot histogramax.hist(wine_reviews['points']) # set title
and labels
ax.set_title('Wine Review Scores') ax.set_xlabel('Points')

ax.set_ylabel('Frequency') plt.show()

create a figure and axis fig, ax = plt.subplots()# count

the occurrence of each class

data = wine_reviews['points'].value_counts() # get x and y data

points = data.index frequency = data.values # create bar chart ax.bar(points,frequency) # set title
and labels

ax.set_title('Wine Review Scores') ax.set_xlabel('Points')

ax.set_ylabel('Frequency') plt.show()

iris.plot.hist(subplots=True, layout=(2,2), figsize=(10, 10), bins=20) plt.show()

wine_reviews['points'].value_counts().sort_index().plot.bar() plt.show()

wine_reviews['points'].value_counts().sort_index().plot.barh() plt.show()

wine_reviews.groupby("country").price.mean().sort_values(ascending=False)[:5
].plo t.bar()
plt.show()

Correlation Matrix corr = iris.corr() fig, ax =
plt.subplots() # create heatmapim =

ax.imshow(corr.values)

set labels ax.set_xticks(np.arange(len(corr.columns)))

ax.set_yticks(np.arange(len(corr.columns))) ax.set_xticklabels(corr.columns)

ax.set_yticklabels(corr.columns)

Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(),rotation=45,
ha="right",

rotation_mode="anchor")

Loop over data dimensions and create text annotations. for i in
range(len(corr.columns)):

forjin range(len(corr.columns)):

text = ax.text(j, i, np.around(corr.ilocli, jl, decimals=2), ha="center",
va="center", color="black")

plt.show()

OUTPUT:

Scatter Plot of IRIS Dataset

Iris Dataset

w
w
1

sepal width
w
(=]

6.0 6.5
sepasl_length

Line chart for each attribute of IRIS Dataset

Iris Dataset

sepal_length
sepal_width
petal_length

petal_width \A/

Histogram for Wine Review Scores.

Wine Review Scores

Frequency

90.0 8925 95.0 97.5 1000

Bar Chart for Wine Review Scores
Wine Review Scores

frequency

~
w
(=
o
I

80 85 20
Points

Multiple histogram for attributes of IRIS Dataset

g g

£

Pequency
]

- atal werth

.

Peguency

n

Vertical bar chart for Wine Review Scores

& 5 &

~ o o
«© 0 «©

I M
2 3RS

~ v o
L] « o

-
L)

Horizontal bar chart for Wine Review Score

e ——

250D S000 7500 10000 12500 15000 17500

Bar chart for Wine Review with highest cost five different Counties.

= n u
& = 3.
= & s

Correlation Matrix

INFERENCE:

Data visualization is a way to represent information graphically, highlighting patterns and trends in data
and helping the reader to achieve quick insights. From this program we learnt how to visualize data using
python.

RESULT: This program was successfully executed.

CONTENT BEYOND SYLLABUS

EX.NO: 15

PRINCIPAL COMPONENT ANALYSIS
DATE:

AlIM:

To write a python Application Program to demonstrate the Principal Component Analysis.

ALGORITHM:

Step 1: Get data.

Step 2: Compute the mean vector (). Step 3:

Subtract mean from the given data.Step 4:

Calculate the covariance matrix.

Step 5: Calculate the eigen vectors and eigen values of the covariance matrix.Step
6: Choosing components and forming a feature vector.

Step 7: Deriving the new data set.

PROGRAM:

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

import seaborn as sns

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()
cancer.keys()

df = pd.DataFrame(cancer['data’],columns=cancer['feature_names')
df.head()
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler fit(df)
scaled_data = scaler.transform(df)

from sklearn.decomposition import PCA
pca = PCA(n_components=2)

pca.fit(scaled_data)

X_pca = pca.transform(scaled_data)

print(“Actual size”,scaled_data.shape)

print(“After PCA”x_pca.shape)

plt.figure(figsize=(8,6))
plt.scatter(x_pcal:,0],x_pca[:,1],c=cancer['target’],cmap="rainbow") plt.xlabel('First
principal component’)

plt.ylabel('Second Principal Component’)

plt.show()

map= pd.DataFrame(pca.components_,columns=cancer[feature_names'])
plt.figure(figsize=(12,6))

sns.heatmap(map,cmap="twilight")plt.show()

OUTPUT:

mao

Srweonded Friceclan 2
= '
N

LRR N BRSO R PN R E [

INFERENCE:

Principal components analysis (PCA) is a dimensionality reduction technique that enables you toidentify
correlations and patterns in a data set so that it can be transformed into a data set of significantly lower
dimension without loss of any important information. From this program we learnt how to implement a

PCA using python.

RESULT: This program was successfully executed.

	OBJECTIVES:
	TOTAL : 60 PERIODS
	INSTALLING ANACONDA ON WINDOWS
	Steps:
	1. Visit the Anaconda downloads page
	2. Select Windows
	3.Download
	Begin with the installation process: Getting Started:
	Choose Installation Location:
	 Getting through the Installation Process:
	 Finishing up the Installation:
	Working with Anaconda:
	Exploring NumPy Packages:
	Installing NumPy
	Install NumPy on Anaconda
	Install NumPy with the Anaconda Prompt
	Verify NumPy installation
	Exploring SciPy Packages:
	Installing Via Conda
	Exploring Juypter Packages:
	Installing Jupyter on Windows using the Anaconda Prompt
	Exploring Stats models Packages:
	Python Support
	Anaconda
	PyPI (pip)
	Exploring Pandas packages

	AIM:
	ALGORITHM:
	PROGRAM:
	OUTPUT
	INFERENCE:
	AIM: (1)
	ALGORITHM: (1)
	PROGRAM: (1)
	OUTPUT:
	INFERENCE: (1)
	AIM: (2)
	ALGORITHM: (2)
	PROGRAM: (2)
	OUTPUT: (1)
	INFERENCE: (2)
	AIM: (3)
	ALGORITHM: (3)
	PROGRAM: (3)
	OUTPUT: (2)
	INFERENCE: (3)
	AIM: (4)
	ALGORITHM: (4)
	PROGRAM: (4)
	OUTPUT: (3)
	INFERENCE: (4)
	AIM: (5)
	ALGORITHM: (5)
	PROGRAM: (5)
	OUTPUT: (4)
	INFERENCE: (5)
	AIM: (6)
	ALGORITHM: (6)
	PROGRAM: (6)
	OUTPUT: (5)
	INFERENCE: (6)
	AIM: (7)
	ALGORITHM: (7)
	PROGRAM: (7)
	OUTPUT: (6)
	AIM: (8)
	ALGORITHM: (8)
	PROGRAM: (8)
	OUTPUT: (7)
	AIM: (9)
	ALGORITHM: (9)
	PROGRAM: (9)
	OUTPUT: (8)
	INFERENCE: (7)
	AIM: (10)
	ALGORITHM: (10)
	PROGRAM: (10)
	OUTPUT: (9)
	AIM: (11)
	ALGORITHM: (11)
	PROGRAM: (11)
	OUTPUT: (10)
	INFERENCE: (8)
	AIM: (12)
	ALGORITHM: (12)
	PROGRAM: (12)
	OUTPUT: (11)
	INFERENCE: (9)
	AIM: (13)
	ALGORITHM: (13)
	PROGRAM: (13)
	OUTPUT: (12)
	INFERENCE: (10)
	CONTENT BEYOND SYLLABUS
	ALGORITHM: (14)
	PROGRAM: (14)
	OUTPUT: (13)

